
Supplementary Methods 
 
 
Re-analysis of copy number data 

Raw copy number files were downloaded from the TCGA data portal 
(http://cancergenome.nih.gov/dataportal). The data were submitted by the following four 
research groups using three assay platforms: 1) Broad Institute of MIT and Harvard (Broad) 
using Affymetrix Genome-wide Human SNP Array 6.0; 2) Memorial Sloan-Kettering Cancer 
Center (MSKCC) using Agilent Human Genome CGH MicroArray 244A; 3) Harvard Medical 
School using Agilent Human Genome CGH MicroArray 244A; and 4) Stanford University 
School of Medicine using Illumina 550K Infinium HumanHap500 SNP Chip.  

For the Affymetrix SNP 6.0 data, the copy number data were re-computed from the 
*.CEL files using Affymetrix Genotyping Console software (version 2.1). The default 
parameters were used and HapMap270.425 model was the reference.  

For the other three data sets, the copy number data of the original submission were 
used.  

For all four sets of copy number data, we ran DNAcopy (v 1.12.0), an R package that 
implements the Circular Binary Segmentation (CBS) algorithm 1 to determine the segments 
of deletion/amplification. The default parameters were used for all data sets. The input was 
the log2 ratio of each marker; where there was matching tumor/normal copy number data, 
the log2 ratio of the tumor/normal pair was used, otherwise the sample/reference log2 ratio 
was used.  

The segments of deletion/amplification generated by CBS were then used to build 
the copy number heat maps. Each segment was mapped initially to a high-resolution set of 
fixed-size (10,000 base pairs) genomic bins. For each bin, the total number of samples 
showing amplification or loss in the bin was tallied. The high-resolution bins were then 
mapped to a set of low-resolution (200,000 base pairs) bins. The copy number value of 
each low-resolution bin was taken from the contained high-resolution bin that showed the 
greatest number of amplifications or losses across samples. For the heat map display, the 
continuous copy number values computed by the CBS algorithm were scaled to 4 discrete 
levels of loss (< 0.3, < 0.8, < 1.3, < 1.8), a neutral level (> 1.8 and <= 2.2), and 5 
discrete levels of gain (<= 2.7, <= 3.2, <= 3.7, <= 4.2, > 4.21). Tumors with paired 
normal were separated from those with no matching normal. Amplifications and deletions 
found in normal samples were considered copy number polymorphisms if the frequency is 
>= 10%.  
 A similar protocol was used to generate the input data for the “landscape” view of 
the Cancer Genome Workbench (CGWB). The low-resolution bin size was set to 1Mb to 
match the scale of chromosome ideogram on the display.  
 The genome view of the copy number data on CGWB (displayed as part of 
TCGA_GBM_CopyNumber and TCGA_GBM_Integrated tracks) shows CBS output with no 
post-processing. Only one copy number data source is selected for each sample. For 
samples that have copy number data generated by multiple groups, copy number data are 
selected in the following order of precedence: Broad, MSKCC, Harvard and Stanford.  
 
Exon array data 
 Exon array expression data were downloaded from the TCGA data portal. The data 
were generated using the Affymetrix Human Exon 1.0 ST Array by Lawrence Berkley 
National Laboratory. Exons that do not overlap with RefSeq (http://www.ncbi.nih.gov) were 
filtered out. Genomic locations of RefSeq exons were obtained from the RefFlat table of the 
UCSC genome browser (http://genome.ucsc.edu). The under- and over-expression display 
is calculated based on the deviation from the mean expression value of each exon.  
 
Putative somatic mutation analysis 



 TCGA traces were downloaded from the NCBI’s trace archive 
(http://www.ncbi.nlm.nih.gov). Variations were analyzed using the SNPdetector 2 and 
IndelDetector pipeline3. To distinguish genetic variations from paralogous variations due to 
non-specific PCR primers, a module for identifying non-specific primers was implemented as 
follows. For any amplicon that shares >90% identity with a second genomic locus, sequence 
variations are compared with paralogous variations. If the forward and the reverse primer 
sequences are identical at the paralog or if the majority of the sequence variations are 
identical to paralogous variations, the primer pair for the amplicon is considered non-
specific and all variations are discarded.  
 
Validated mutations 
 The chromosome locations and genotypes of validated somatic mutations were 
extracted from the MAF files on the TCGA data portal. The data were submitted by the 
following three genome sequencing centers: Broad Institute of MIT and Harvard, 
Washington University, and Baylor College of Medicine. For tumor samples with conflicting 
genotypes reported by different centers, the homozygous genotype is preferred where there 
is also somatic copy number variation; otherwise, the heterozygous genotype is selected.  
 
Somatic mutation annotation 
 Putative variations as well as validated somatic mutations were mapped to RefSeq to 
compute the amino acid changes and location on the 3D structure as described previously3. 
The impact of the protein alteration on conserved domains is assessed by logE4  and SIFT5 
methods.  
 
Methylation data 
 Methylation data, submitted by Johns Hopkins/University of Southern California, 
were downloaded from the TCGA data portal. The data were generated using the Illumina 
DNA Methylation OMA002 and OMA003 Cancer Panels. Genomic location of a methylation 
site was computed by running a search of its probe sequence against the reference human 
genome using the program BLAT 6. Methylation beta values are displayed on CGWB at 3 
discrete levels (<0.25, <0.75, >=0.75) to represent under-, neutral, and over-methylation.  
 
Gene expression analysis 

TCGA Gene expression data, submitted by the Broad Institute, were downloaded 
from the TCGA data portal. The data were generated using Affymetrix HT Human Genome 
U133A chip. Only GBM tumor expression data are available in this data set. To obtain non-
tumor reference expression data, gene expression data generated by Li et al 7 using 
Affymetrix U133 Plus2 were downloaded from the  Repository of Molecular Brain Neoplasia 
Data web site (“Rembrandt”, http://caintegrator-info.nci.nih.gov/rembrandt). The 
“Rembrandt” CEL files were converted into the U133A format and the two data sets were 
normalized using RMA (Robust MultiChip Average) with custom CDF (Chip Definition File) 
that removes the non-specific and mis-targeted probes to create gene-specific expression 
values8. The non-tumor data in Li et al provides the baseline expression value. The 
probability of each gene being in the ‘up’ state for each sample was then calculated by 
fitting the data to a mixture of 2 gamma distributions9. Clustering using only the top 1000 
most variable genes separated normal from tumor samples with no apparent batch effect. 

 
Correlation analysis 

TCGA has microRNA (miRNA) and gene expression data from the same samples, 
which allows us to examine the possible regulation of gene expression by microRNA 
expression. A negative correlation between the expression of microRNA and its target genes 
(miRNA-mRNA correlation) is expected. To explore this, we download the gene expression 
and microRNA expression data (UNC Agilent G4502A_07 and UNC Agilent 8x15K) directly 



from the TCGA Data Portal (http://tcga-data.nci.nih.gov/tcga/homepage.htm). The miRNA 
target site data was downloaded from the UCSC Genome Browser 
(http://genome.ucsc.edu/cgi-
bin/hgTables?org=Human&db=hg18&hgsid=145859044&hgta_doMainPage=1&hgta_group=
regulation&hgta_track=targetScanS&hgta_table=targetScanS), which is predicted by 
TargetScan10. The Pearson correlation analysis was performed for each miRNA and predicted 
gene pair: there are a total of 122,794 pairs, 99,864 pairs for TCGA GBM and TCGA OV, 
respectively). The p-value for the correlation was adjusted for multiple testing. A miRNA-
mRNA pair with significant correlation was then defined by meeting the following two 
criteria: 1) correlation coefficient greater than 2 standard deviations from the mean; and 2) 
the adjusted p-value less than 0.001. Consequently, 2,903 and 884 significant negative 
correlations were found between miRNAs and their target genes in TCGA GBM and TCGA 
OV, respectively. 
 12295 genes in TCGA GBM and 12151 genes in TCGA OV have both expression and 
methylation data. Methylation beta value and log2 intensity of gene expression data 
described above were used to calculate correlation-coefficient using the Perl module Math-
NumberCruncher-5.00.  

Normalized gene expression and methylation data for TCGA glioblastoma multiforme 
(GBM) and ovarian cancer (OV) were obtained from the TCGA Data Portal (http://tcga-
data.nci.nih.gov). Gene expression analyses of TCGA samples using Agilent Expression 244K 
microarrays were performed by The University of North Carolina at Chapel Hill. Methylation 
profilings were carried out by Johns Hopkins University and University of Southern 
California. For TCGA GBM samples, Illumina Golden Gate Methylation Bead array, 
customized Golden Gate Methylation Bead array, and Illumina Infinium Human DNA 
Methylation 27 platform were used. For TCGA OV samples, Illumina Infinium Human DNA 
Methylation 27 platform was used.  

 
Next-generation sequencing data 
 BAM files, which record the alignment between each next-gen read and the reference 
human genome (hg18), for 19 exon capture and 5 whole-genome sequencing data of TCGA 
Ovarian were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap/). Read coverage 
for each genomic base was calculated by including only reads with quality score >=15.  

These BAM files were also used to find substitution variations (i.e. SNPs). The SNP 
finder uses the "Picard" Java API (http://picard.sourceforge.net/index.shtml) to read SAM 
data11.    

SNPs are detected by iterating through one or more .bam files, which are typically 
pre-sorted by reference sequence name and mapping position.  Multiple files (e.g. for a 
tumor/normal pair) may be analyzed together; in this case a wrapper is used which 
combines the iterators from all files, essentially creating a single virtual file which returns 
reads from multiple sources in one ordered stream. 

Putative SNP sites are detected by comparing non-clipped read alignments to the 
reference sequences.  Each SAM record's “CIGAR” (Concise Idiosyncratic Gapped Alignment 
Report) alignment field is also parsed to determine putative indel sites. These observations 
are aggregated and periodically evaluated once all reads covering a section of the genome 
have been read.  Various heuristics are applied to each aggregation of putative sites to 
determine whether a final SNP or indel call should be made. 

All reads pass through a mismatch filter, which is intended to prevent potentially 
mismapped reads from contributing to SNP or indel calling. Currently we exclude any read 
from consideration having more than 2 mismatches of quality 15 or better, or more than 4 
mismatches of any quality.  Mismatches are not included in this count if they occur in soft-
clipped regions, or within poly-X regions of 5 nt or longer. 

For SNPs, the alternative allele is the most frequently-observed non-reference allele 
(this may be the dominant or only observed allele for samples homozygous for the non-



reference allele). A minimum nucleotide quality of 15 is required at each variant site. For 
SNPs, this is the quality at the SNP base.  Additionally a minimum amount of high-quality 
flanking sequence may be required (default is 5 or more nt of quality 15+). Simple filters 
are provided to control minimum required observation frequencies: minimum read 
coverage, minimum number of reads supporting the alternative allele, and minimum 
observed frequency of the alternative allele. Reads with SAM's "PCR/Optical duplicate" flag 
set are excluded from the analysis, as these typically represent monoclonal artifacts.  Two 
additional filters help combat similar effects: one which requires at least one sequence at 
the variant site to have 10 nt or more of flanking sequence, and another which requires at 
least 2 unique mapping positions for reads which contribute to a variant. All the filters 
described above are configurable; different parameters may be appropriate depending on 
the desired analysis. 
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